Publications

Research Team Publications


Book Chapters

  • Buteau, C., Muller, E., Santacruz Rodriguez, M., Mgombelo, J., Sacristán, A., & Gueudet, G. (2023). Instrumental orchestration of using programming for authentic mathematics investigation projects. In A. Clark-Wilson, O. Robutti, & N. Sinclair (Eds.), The Mathematics Teacher in the Digital Era (2nd Edition) (pp. 289-322). Springer Netherlands.

Journal Articles

Papers in Conference Proceedings

Poster Presentations at Scholarly Events

To view the posters, click here.

Videos

  • Sardella, J. (2023, August 30). Learning to use programming as a tool for pure and applied mathematical inquiry: What students value most from their experience [Video]. YouTube. https://www.youtube.com/watch?v=YBLhgjRslmg
  • Boerkamp, S., & Sardella, J. (2023, August 30). University students learning to use programming for math inquiry: What students are most proud of and why [Video]. YouTube. https://www.youtube.com/watch?v=hYoli-bLjRk
  • Balt, K., & Buteau, C. (2020a, September 4). Illustrating the web of schemes: A student’s process when engaging in using programming for pure or applied math investigation [Video]. YouTube. https://youtu.be/teJAd3TDw9E
  • Balt, K., & Buteau, C. (2020b, September 4). Using programming for pure/applied mathematics investigation: Mandelbrot set and running in the rain illustrations [Video]. YouTube. https://youtu.be/irTlCE-eXhc
  • Buteau, C. & Muller E. (2017, July 4). A university mathematics department’s adoption of constructionist math courses [Video]. YouTube. https://www.youtube.com/watch?v=SNvTdaG04gc&t=27s

Research Members’ Related Publications


Journal Special Issue

Journal Articles and Book Chapters

Conference Proceedings

Articles in Professional Journals

Related Literature


  • Abrahamson, D., Berland, M., Shapiro, B., Unterman, J., & Wilensky, U. (2004). Leveraging epistemological diversity through computer-based argumentation in the domain of probability. For the Learning of Mathematics, 26(3), 19-45.
  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245-274.
  • Assude, T. (2007). Teachers’ practices and degree of ICT integration. In D. Pitta-Pantazi & G. N. Philippou (Eds.), Proceedings of the fifth congress of the European Society for Research in Mathematics Education (pp. 1339-1348). Larnaka, Cyprus: Department of Education, University of Cyprus.
  • Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing computational thinking in compulsory education: Implications for policy and practice. EU Science Hub. Retrieved from https://ec.europa.eu/jrc/en/printpdf/175911  
  • Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Proceedings of the American Educational Research Association (AERA) annual conference. Retrieved from http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
  • Cook, L. S., Smagorinsky, P., Fry, P. G., Konopak, B., & Moore, C. (2002). Problems in developing a constructivist approach to teaching: One teacher’s transition from teacher preparation to teaching. The Elementary School Journal, 102(5), 389-413.
  • Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in mathematics75(2), 213-234.
  • European Mathematical Society. (2011). Position paper on the European Commission’s contributions to European research. Retrieved in October 2018 from http://ec.europa.eu/research/horizon2020/pdf/contributions/post/european_organisations/european_mathematical_society.pdf (PDF copy available here)
  • Feurzeig, W., & Lukas, G. (1972). LOGO—A programming language for teaching mathematics. Educational Technology, 12(3), 39-46.
  • Goos, M., & Soury-Lavergne, S. (2010). Teachers and teaching: Theoretical perspectives and classroom implementation. In C. Hoyles & J.-B. Lagrange (Eds.), ICMI Study 17, technology revisited, ICMI study series (pp. 311-328). New York, NY: Springer.
  • Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational Researcher, 42(1), 38-43. doi:10.3102/0013189X12463051
  • Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments. The case of calculators. International Journal of Computers for Mathematical Learning, 3(3), 195-227.
  • Hoadley, C. (2012). What is a community of practice and how can we support it? In D. H. Jonassen & S. M. Land (Eds.), Theoretical foundations of learning environments (2nd Ed.)(287-300) New York: Routledge.
  • Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and learning in a digital world. Mahwah, NJ: Erlbaum, Routledge.
  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York, NY: Cambridge University Press.
  • Leron, U., & Dubinsky, E. (1995). An abstract algebra story. American Mathematical Monthly, 102(3), 227-242.
  • Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers (Vol. 17). Dordrecht, Netherlands: Kluwer.
  • Papert, S., & Harel, I. (1991). Situating constructionisn. In S. Papert & I. Harel (Eds.), Constructionism (pp. 1-12). Norwood, NJ: Ablex.
  • Papert, S. (1971). Teaching children to be mathematicians vs. teaching about mathematics. Artificial Intelligence Memo No. 249. Retrieved from http://hdl.handle.net/1721.1/5837
  • Papert, S. (1980a). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.
  • Papert, S. (1980b). Computer-based microworlds as incubators for powerful ideas. In R. Taylor (Ed.), The computer in the school: tutor, tool, tutee (pp. 203–210). New York: Teacher’s College Press.
  • President’s Information Technology Advisory Committee. (2005). Computational science: Ensuring America’s competitiveness. Retrieved from https://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf
  • Rabardel, P. (1995/2002). Les hommes et les technologies; approche cognitives des instruments contemporains. Paris, France: Armand Colin.
  • Trouche, L., & Drijvers, P. (2010). Handheld technology for mathematics education: Flashback into the future. ZDM: The International Journal on Mathematics Education, 42, 667-681. doi:10.1007/s11858-010-0269-2
  • Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281-307. doi:10.1007/s10758- 004-3468-5
  • Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms.  Journal for Science Education and Technology, 25, 127-147.
  • Wilensky, U. (1995). Paradox, programming and learning probability. Journal of Mathematical Behavior, 14(2), 231-280.
  • Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A, 366(1881), 3717-3725.
  • Wing, J. M. (2014, January 9). Computational thinking benefits society. Social Issues in Computing, 40th Anniversary Blog, University of Toronto. Retrieved from http://socialissues.cs.toronto.edu/index.html%3Fp=279.html