Features of 'Authentic' Programming-based Mathematical Tasks

Chantal Buteau¹, Joyce Mgombelo¹, Eric Muller¹, Abolfazl Rafiepour², Ana Isabel Sacristan³

¹Brock University, Canada, cbuteau@brocku.ca; ²Shahid Bahonar University of Kerman, Iran; ³Cinvestav, Mexico

Introduction/Context

- There is a resurgence of interest in integrating programming, more broadly computational thinking (CT), in education (Benton et al., 2017)⁸;
- This reflects scientific fields that have developed a computational counterpart (Weintrop et al., 2016)¹ & the rise of a **21st century skill and need** for proficiency in computational practices.
- Weintrop et al. (2016) argue for 'authentic'
 computational tasks in math and science classes,
 providing a taxonomy of computational practices¹
- Our interest is in CT curriculum development and task design that would equip students with skills and competencies to address this need, in relation to programming for math learning.

Methodology

- We view students' learning through the concept of "legitimate peripheral participation"³
- This poster focuses on the features of 'authentic' tasks in which students engage peripherally in CT for mathematics practices as mathematicians do¹
- We analyze the 14 project-based tasks from a sequence of 3 programming-based math courses, Mathematics Integrated with Computers and Applications (MICA) at Brock University:
- We explored the relevance of affordances of CT for mathematics learning (Gadanidis et al., 2017) in the work of mathematicians;⁴ then examined the 14 tasks to identify common task features.

CT-based Math Project Tasks* (since 2001⁵)

*accounting for 70-80% of students' final grades
*used in Buteau et al.'s (2016) study⁵— see the latter for details

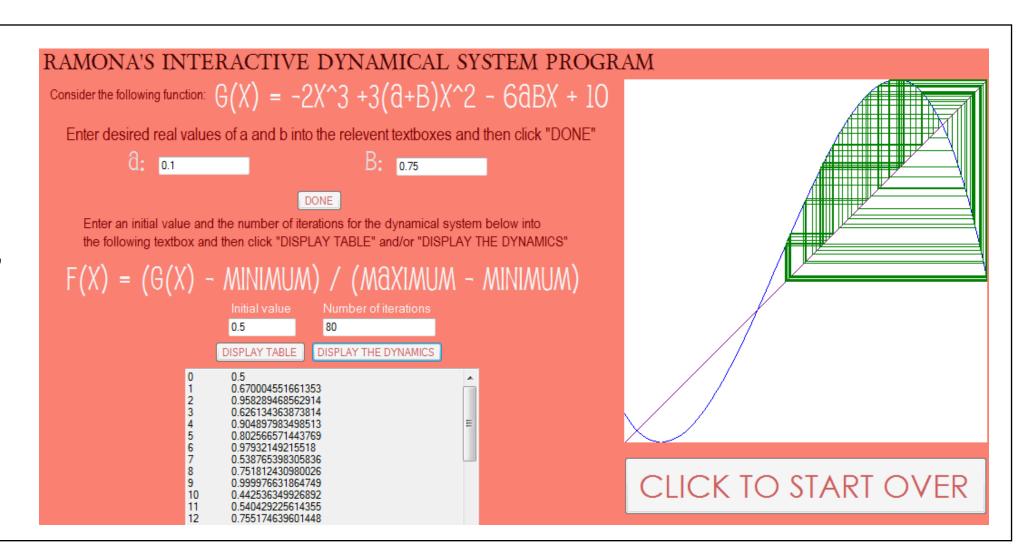
- EO1. Conjecture about primes or hailstone sequences
- EO2. RSA encryption method
- EO3. Discrete dynamical system (cubic with two parameters)
- EO4. Original project for which students select the topic themselves
- EO5. Areas & Monte Carlo integration
- EO6. Stats application to stock market
- EO7. Synchronization of traffic lights (in pairs)
- EO8. Markov chains applied to income demographics & chronic illness
- EO9. Original project for which students select the topic themselves
 EO10. Discrete dynamical system of the logistic function &
- EO10. Discrete dynamical system of the logistic function & bifurcation diagram
- EO11. Simulation of battles (Lanchester equations)
- EO12. Prey-predator biological model (Lotka-Volterra)
- EO13. Cellular automata, simulation of epidemics & costs
- EO14. Original project for which students select the topic themselves

Task Analysis

Affordances of	Dynamic Modelling	Conceptual surprise	Tangible feel	Abstraction & automation	Agency
Computational Thinking for Mathematics Learning (Gadanidis et al., 2017) ⁴	 Changing code immediately illustrates the "mathematical reaction" (p. 79)⁴ Programming is an <i>object to think with</i>⁶, to conjecture and to explore 	 Dynamic modelling "increases the potential for students to experience the pleasure of mathematical surprise" (p. 80)⁴ 	 When translated into code, mathematical concepts develop a tangible feel⁴ Such concepts can be "manipulated, listed, printed, drawn" (p. 80)⁴ 	 Programming is a means for mathematicians to automate their work, which is made more efficient or even possible (e.g. dynamic visualizations) 	 Students are in control when they write code⁴ Experience CT and mathematics as producers and consumers by creating their own programs⁴
In the Work of Mathematicians	 In dynamic modelling, "the choice of models goes hand in hand with the computational tools and the mathematical analysis" 7 	 Mathematicians work on unknown math Broley et al. (2017) discuss how a mathematician spoke with excitement about her discovery² 	 Mathematicians use and aim for visual and dynamic representation in CT-based research Visualizations lead to discoveries that would be otherwise unseen² 	 Mathematicians use programming to "compute 'amazing things' that are 'not computable' by traditional methods" (p. 2520)² 	 Agency is natural to researchers in any discipline who research what they are passionate about and as such is meaningful to them and to their community
Features for "Authentic" Programming-Based Math	 In EO3, students explores the system graphically and numerically Students use their EO to find parameter values leading to a periodic behaviour 	 The discrete dynamical system of EO3 is unknown to students Students can experience surprise as a mathematician would 	 EO3 task includes the dynamic graphical construction of the system cobweb The tangible feel affordance is observed as a visual representation 	 EO3 involves the investigation of a discrete dynamical system The focus is on interpretation through simulations 	 EO3 is one of three pure mathematics project tasks Relies on the development of the instructor to trigger students' curiosity. Many other EOs are applications
Tasks	Should lead to conjecturing/exploring of unknown mathematics (to the students)		(Dynamic) visualization	Cannot be done by hand	Meaningful to students

Analysis of Curriculum Design

Affordances of	Wide walls	Low floor-high ceiling				
Computational Thinking for Mathematics Learning (Gadanidis et al., 2017) ⁴	 Computer coding supports a variety of project types⁴ Individuals with diverse interests can all be engaged in the task⁴ 	• Students can "engage with minimal prerequisite knowledge (low floor) with more complex concepts (high ceiling)" (p. 83) ⁴				
Curriculum Design	 MICA integrates variety in the 11 assigned tasks and 3 final project tasks for which students select their own topic. Range of pure and applied math topics 	 MICA I students learn computational concepts within an accessible related mathematics context Tasks are open to investigations and explorations 				
	Diversity in CT-based mathematics task collection	Careful sequencing of CT-based tasks				


Social Sciences and Humanities Con
Research Council of Canada scien

Conseil de recherches en sciences humaines du Canada

Canada

Sample CT-based Math Project Task (EO3)

Design, program, then use an interactive environment to **explore**, **graphically and numerically**, the discrete dynamical system based on a cubic (with 2 parameters): find pairs of parameter values leading to a periodic behaviour.⁵

Concluding Remarks

- Our task analysis guided by CT affordances for mathematics learning (Gadanidis et al., 2017)⁴ led to identify **4 features for 'authentic' programming-based mathematical tasks**
- Our curriculum analysis highlights a possible task sequencing to support novices' CT development for math investigations and applications (as a 21st Century skill)
- Our current 5-year long SSHRC-funded research focuses on examining students' CT development throughout their overall curriculum over three academic terms

References

- 1. Weintrop D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science
- classrooms. Journal for Science Education and Technology, 25, 127-147.

 2. Broley, L., Buteau, C., & Muller, E. (2017). (Legitimate peripheral) computational thinking in mathematics. Proceedings of CERME (pp. 2525-23), Dublin, Ireland.

 3. Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York, NY: Cambridge University Press.
- 4. Gadanidis, G., Hughes, J. M., Minniti, L., & White, B. J. G. (2017). Computational thinking, Grade 1 students and the Binomial Theorem. *Digital Experiences in*
- Mathematics Education, 3(2), 77-96. doi:10.1007/s40751-016-0019-3

 Buteau, C., Muller, E., Marshall, N., Sacristán, A. I., & Mgombelo, J. (2016). Undergraduate mathematics students appropriating programming as a tool for
- modelling, simulation, and visualization: A case study. *Digital Experience in Mathematics Education*, 2(2), 142-156. doi:10.1007/s40751-016-0017-5

 6. Papert, S. (1980). *Mindstorms: Children, computers, and powerful ideas*. New York, NY: Basic Books.
- 7. Centre de recherches mathématiques (2016). *Computational mathematics in emerging applications*. Retrieved from
- http://www.crm.umontreal.ca/act/theme/theme_2016_1_en/

 8. Benton, L., Hoyles, C., Kalas, I., & Noss, R. (2017). Bridging primary programming and math: Some findings of design research in England. *DEME*, 3(2), 115-138.