Research Team Publications

Book Chapters

  • Buteau, C., Muller, E., Santacruz Rodiguez, M., Mgombelo, J., Sacristán, A., & Gueudet, G. (In Press). Instrumental orchestration of using programming for authentic mathematics investigation projects. In A. Clark-Wilson, O. Robutti, & N. Sinclair (Eds.), The Mathematics Teacher in the Digital Era (2nd Edition). Springer Netherlands.

Journal Articles

Papers in Conference Proceedings

Poster Presentations at Scholarly Event

To view the posters, click here.


  • Balt, K., & Buteau, C. (2020a, September 4). Illustrating the web of schemes: A student’s process when engaging in using programming for pure or applied math investigation [Video]. YouTube.
  • Balt, K., & Buteau, C. (2020b, September 4). Using programming for pure/applied mathematics investigation: Mandelbrot set and running in the rain illustrations [Video]. YouTube.
  • Buteau, C. & Muller E. (2017, July 4). A university mathematics department’s adoption of constructionist math courses [Video]. YouTube.

Research Members’ Related Publications

Journal Articles and Book Chapters

Conference Proceedings

  • Mamolo, A., Buteau, C., & Muller, E. (forth.). Prospective mathematics and sciences teachers’ views on coding and computational thinking. American Educational Research Association (AERA) Annual Meeting, Toronto, ON, April 2019.
  • Gannon, S., with Buteau, C. (2018). Integration of Computational Thinking in Canadian Provinces. In Online Proceedings of the Computational Thinking in Mathematics Education Symposium, UOIT (Scarborough), October 2017.
  • Broley, L., Buteau, C., & Muller, E. (2017). (Legitimate peripheral) computational thinking in mathematics. Proceedings of the Congress of European Society for Research in Mathematics Education (CERME), Dublin (Ireland), February 2017.
  • Buteau, C., Gadanidis, G., Lovric, M., & Muller, E. (2017). Computational Thinking and Mathematics Curricula/La pensée computationnelle et le programme de mathématiques. Proceedings of the Canadian Mathematics Education Study Group (CMESG) 2016 Annual Conference, Kingston (Canada), June 2016, 119-135.
  • Buteau, C. & Muller, E. (forth.). Systemic integration of programming in undergraduate mathematics: from implementation to theory. International Congress on Mathematical Education 2016, Hamburg (Germany).
  • Buteau,  (2016). Undergraduates Learning of Programming for Simulation and Investigation of Mathematics Concepts and Real-World Modelling. Online proceedings of Didactics of Mathematics in Higher Education as a Scientific Discipline, Hanover (Germany), December 2015.
  • Buteau, C., Muller, E., & Ralph, B (2015). Integration of Programming in the Undergraduate Mathematics Program at Brock University. In the Online Proceedings of Math+Coding Symposium, London (Ontario), June 2015.
  • Buteau, C., Marshall, N., & Muller, E. (2014). Learning university mathematics by creating and using fourteen ‘microworlds’. In G. Futschek & C. Kynigos (Eds.), Constructionism and Creativity. Proceedings of the 3rd International Constructionism Conference 2014 (pp. 401-406). Vienna, Austria: Österreichische Computer Gesellschaft (OCG).
  • Buteau, C., Marshall, N., & Muller, E. (2014). Perception on the Nature of Core University Mathematics Microworld-Based Courses. In G. Futschek & C. Kynigos (Eds.), Constructionism and Creativity. Proceedings of the 3rd International Constructionism Conference 2014 (pp. 379-389). Vienna, Austria: Österreichische Computer Gesellschaft (OCG).
  • Buteau, C., Muller, E., & Marshall, N. (2014). Competencies Developed by University Students in Microworld-type Core Mathematics Courses. In Proceedings of Joint Meeting Int. Group Psychology Mathematics Education (PME 38), Vancouver, Canada, 2014, pp. 209-18.
  • Marshall, N., Buteau, C. & E. Muller (2013): Exploratory Objects and Microworlds in University Mathematics Education. In Proceedings of the 11th International Conference on Technology in Mathematics Teaching, Bari (Italy), 187-193.
  • Mgombelo, J. & Buteau, C. (2012): Learning Mathematics for Teaching Through Designing, Implementing, and Testing Learning Objects. Issues in the Undergraduate Mathematics Preparation of School Teachers: The Journal, Vol 3. 16pp.
  • Muller, E., & C.Buteau (2012). An Innovative Integration of Evolving Technologies in Undergraduate Mathematics Education. In Essays on Mathematics and Statistics, Vol. 2, Akis, V. (Ed.), Athens Institute for Education and Research (publisher), 117-122.
  • Buteau, C. & E. Muller (2010): Student Development Process of Designing and Implementing Exploratory and Learning Objects. In Proceedings of the Sixth Conference of European Research in Mathematics Education Lyon, France – Jan. 28th – Feb. 1, 2009, 1111-1120.
  • Mgombelo, J. & Buteau, C. (2010): Mathematics Teacher Education Research and Practice: Researching Inside the MICA Program. In Proceedings of the Sixth Conference of European Research in Mathematics Education (CERME 6), Lyon (France), 2009, 1901-1910.
  • Buteau, C. & Muller, E. (2006). Evolving technologies integrated into undergraduate mathematics education. In L. H. Son, N. Sinclair, J. B. Lagrange, & C. Hoyles (Eds.), Proceedings for the Seventeenth ICMI Study Conference: Digital Technologies and Mathematics Teaching and Learning: Revisiting the Terrain, Hanoi University of Technology, 3rd-8th December, 2006, Hanoi (Vietnam) (c42)[CD-ROM], 8 pp.

Related Literature

  • Abrahamson, D., Berland, M., Shapiro, B., Unterman, J., & Wilensky, U. (2004). Leveraging epistemological diversity through computer-based argumentation in the domain of probability. For the Learning of Mathematics, 26(3), 19-45.
  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245-274.
  • Assude, T. (2007). Teachers’ practices and degree of ICT integration. In D. Pitta-Pantazi & G. N. Philippou (Eds.), Proceedings of the fifth congress of the European Society for Research in Mathematics Education (pp. 1339-1348). Larnaka, Cyprus: Department of Education, University of Cyprus.
  • Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing computational thinking in compulsory education: Implications for policy and practice. EU Science Hub. Retrieved from  
  • Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Proceedings of the American Educational Research Association (AERA) annual conference. Retrieved from
  • Cook, L. S., Smagorinsky, P., Fry, P. G., Konopak, B., & Moore, C. (2002). Problems in developing a constructivist approach to teaching: One teacher’s transition from teacher preparation to teaching. The Elementary School Journal, 102(5), 389-413.
  • Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in mathematics75(2), 213-234.
  • European Mathematical Society. (2011). Position paper on the European Commission’s contributions to European research. Retrieved in October 2018 from (PDF copy available here)
  • Feurzeig, W., & Lukas, G. (1972). LOGO—A programming language for teaching mathematics. Educational Technology, 12(3), 39-46.
  • Goos, M., & Soury-Lavergne, S. (2010). Teachers and teaching: Theoretical perspectives and classroom implementation. In C. Hoyles & J.-B. Lagrange (Eds.), ICMI Study 17, technology revisited, ICMI study series (pp. 311-328). New York, NY: Springer.
  • Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational Researcher, 42(1), 38-43. doi:10.3102/0013189X12463051
  • Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments. The case of calculators. International Journal of Computers for Mathematical Learning, 3(3), 195-227.
  • Hoadley, C. (2012). What is a community of practice and how can we support it? In D. H. Jonassen & S. M. Land (Eds.), Theoretical foundations of learning environments (2nd Ed.)(287-300) New York: Routledge.
  • Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and learning in a digital world. Mahwah, NJ: Erlbaum, Routledge.
  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York, NY: Cambridge University Press.
  • Leron, U., & Dubinsky, E. (1995). An abstract algebra story. American Mathematical Monthly, 102(3), 227-242.
  • Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers (Vol. 17). Dordrecht, Netherlands: Kluwer.
  • Papert, S., & Harel, I. (1991). Situating constructionisn. In S. Papert & I. Harel (Eds.), Constructionism (pp. 1-12). Norwood, NJ: Ablex.
  • Papert, S. (1971). Teaching children to be mathematicians vs. teaching about mathematics. Artificial Intelligence Memo No. 249. Retrieved from
  • Papert, S. (1980a). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.
  • Papert, S. (1980b). Computer-based microworlds as incubators for powerful ideas. In R. Taylor (Ed.), The computer in the school: tutor, tool, tutee (pp. 203–210). New York: Teacher’s College Press.
  • President’s Information Technology Advisory Committee. (2005). Computational science: Ensuring America’s competitiveness. Retrieved from
  • Rabardel, P. (1995/2002). Les hommes et les technologies; approche cognitives des instruments contemporains. Paris, France: Armand Colin.
  • Trouche, L., & Drijvers, P. (2010). Handheld technology for mathematics education: Flashback into the future. ZDM: The International Journal on Mathematics Education, 42, 667-681. doi:10.1007/s11858-010-0269-2
  • Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281-307. doi:10.1007/s10758- 004-3468-5
  • Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms.  Journal for Science Education and Technology, 25, 127-147.
  • Wilensky, U. (1995). Paradox, programming and learning probability. Journal of Mathematical Behavior, 14(2), 231-280.
  • Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A, 366(1881), 3717-3725.
  • Wing, J. M. (2014, January 9). Computational thinking benefits society. Social Issues in Computing, 40th Anniversary Blog, University of Toronto. Retrieved from